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We have proposed a new probabilistic inversion method to perform the joint inversion
of receiver function and surface wave dispersion data. In this method, we apply the
Hamiltonian dynamics in the Bayesian framework to efficiently sample the posterior
probability distribution of this joint inverse problem. This method will lead to nearly
100% acceptance of each sample in theory. Semianalytical derivatives of both the data-
sets to the model parameters (including elastic parameters, density, and the thickness
of each layer) are used to speed up this algorithm. Finally, we apply our method to both
synthetic data and real data. The result shows that the velocity model can be recovered
well within a much smaller number of samplings than the traditional Markov chain
Monte Carlo method.

Introduction
The elastic parameters and the corresponding velocity variation
in the shallow and deep earth are quite essential to our under-
standing of the dynamics of the earth system. Seismic imaging is
one of the most powerful tools to investigate these characteristics
in a data-driven approach, thereby leading to many successful
achievements including travel-time tomography (Thurber and
Um, 1987; Rawlinson and Sambridge, 2004, 2005), waveform
inversion (Fichtner et al., 2008, 2009, 2013), and attenuation
analysis (Zhao et al., 2013; Zhao and Mousavi, 2018).

Among these approaches, the receiver function (RF) analy-
sis and surface wave dispersion (SWD) inversion together have
become one of the most popular methods in the past decades
due to the wide availability of observations, the complemen-
tarity of these two datasets, and the high sensitivity to the varia-
tion of elastic parameters. RF is a time series that contain
reflection and conversion waves by deconvolving the vertical
component from the horizontal component (Langston, 1979).
The deconvolution removes the effect of source and travel
path, and it accentuates the relative arrival time between the
first arrivals and multiples. The relative arrival time is sensitive
to velocity discontinuities (Ammon et al., 1990) but contains
fewer constraints on absolute velocity. On the contrary, the
SWDs are sensitive to absolute shear-wave velocities (Shen
et al., 2013), and thus, be widely applied to the crustal structure
of S waves (Bourjot and Romanowicz, 1992). Therefore, it is
natural to combine these two data sets to perform the joint
inversion. Joint inversion could benefit from both the methods
and overcome their limitations when two datasets are inverted
separately.

Traditionally, joint inversion will be cast into a linearized,
iterative least square problem (Julià et al., 2000). However, an
initial model is required for the iterative method. The result
obtained by the minimization of the misfit function is highly
relevant to the choice of the initial model (Ammon et al.,
1990) and may not always converge to the global minimum.
Another problem is the incomplete observation, which leads
to the nonuniqueness of this inverse problem (Backus and
Gilbert, 1967; Jackson, 1979). Although the regularization in
objective function would reduce the ambiguity of solution, it
may introduce unrealistic smoothing to the result (Sen et al.,
2014). These challenges prompt us to solve the inversion prob-
lem from another point of view—the probabilistic framework
(Tarantola, 2005).

The Bayesian inference is more and more prevalent in geo-
physical inversion recently (Sambridge, 1999; Sambridge and
Mosegaard, 2002; Bodin, Sambridge, Rawlinson, et al., 2012;
Shen et al., 2013). It describes the connection between the pos-
terior probability density and prior information or likelihood
function. In the view of the Bayesian framework, posterior
probability density represents the possibility of model param-
eters for given observation data, and the likelihood function is
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established by misfit function of the specific inversion problem.
The basic idea behind Monte Carlo method is that the char-
acteristics of posterior probability density can be obtained by
sampling methods. The Markov chain Monte Carlo (McMC;
Hastings, 1970) is the most commonly used sampling method.
With the Metropolis–Hastings criterion (Chib and Greenberg,
1995), sampling density will converge to target distribution
after massive trials of McMC approach. Moreover, the model
parameterization (i.e., the number of layers) can be acquired by
the transdimensional McMC method. The reversible-jump
algorithm (Green, 1995) allows the change of dimensions of
parameter subspace by using a reversible Markov chain and
is also widely used in geophysics inversion (Bodin and
Sambridge, 2009; Agostinetti and Malinverno, 2010; Bodin,
Sambridge, Tkalcic, et al., 2012). Nevertheless, the computa-
tional cost of sampling in the Monte Carlo method is high,
and the convergence rate is extremely low, especially for sam-
pling complex posteriors in high dimensional space. The way-
out to perform the faster sample is to make use of gradient
information (Girolami and Calderhead, 2011).

The Hamiltonian Monte Carlo (HMC) is one of the McMC
methods and has been used in solving the seismic inverse prob-
lems for the recent several years (Sen and Biswas, 2017;
Fichtner and Simute, 2018; Fichtner and Zunino, 2019;
Aleardi et al., 2020). It brings Hamiltonian dynamics to sample
processes, which helps to reduce the random behavior and
make the sampling more effective. In the HMC context, the
model is treated as a particle that has mass, momentum,
and potential energy. The inverse process can be considered
as the particle moving from the current position to a new posi-
tion in the phase space. The potential energy is interpreted as
the misfit function, whereas the kinetic energy provides the
updated direction of the model parameters in the sampling
framework (Girolami and Calderhead, 2011). Although the
cost of gradient computation may be much high, especially
when using numerical differentiation to approximate the gra-
dient, it can be suitable for the problems that have the analytic
or semianalytic form of derivative.

This article is organized in the following ways: First, we
introduce the HMC framework including how the forward
and inverse problem is defined, how to merge HMC in our
problem, and calculate the gradient of both the datasets.
Then we compare our method with one of the prevalent
McMC methods (reversible-jump [rj] McMC) in the synthetic
test problem to show the advantage of our HMC method and
apply it to the real data set. Finally, we will discuss the effects of
some parameters in our framework and focus on the limitation
of our method.

Methodology
HMC basics for inversion problems
In the probabilistic point of view, a geophysical inversion prob-
lem could be reckoned as a Bayesian inference problem in

which we seek to find a (or a series of) model(s) to adequately
sample a target posterior probabilistic distribution (Tarantola,
1984). To be specific, in the Bayesian inference framework the
posterior of the inverse problem is

EQ-TARGET;temp:intralink-;df1;320;691P�mjdobs� �
P�dobsjm�P�m�

P�dobs�
; �1�

in whichm denotes the unknown model parameters, dobs is the
dataset (usually with noise) from geophysical observations,
P�m� is the prior information we have known about these
unknown parameters, and P�dobsjm� is the possibility of
obtaining the dataset by a given model, thus, usually including
the physics and error estimation of the inverse problem. It
could be related to the misfit function through

EQ-TARGET;temp:intralink-;df2;320;548P�mjdobs� ∝ exp�−Φ�m; dobs��; �2�

in which Φ is the misfit function of the inverse problem. If
Gaussian noise is preferred, then it will have the form:

EQ-TARGET;temp:intralink-;df3;320;484Φ � 1
2
�d − dobs�TΣ−1�d − dobs�; �3�

in which Σ is the covariance matrix of the dataset.
Several approaches are presented to locate these “optimized

models”. The most prevalent technique for model inference is
maximum-likelihood estimation, which aims at finding a
model to maximize the likelihood function. Linearized inver-
sion is one of the preferred methods to find the best models by
utilizing the gradient of the posteriors (Julià et al., 2000; West
et al., 2004; Nunn et al., 2014), but it may be stuck in the local
minimal due to the complexity of the posterior function (Aster
et al., 2012). On the contrary, global optimization methods,
including Nearest Algorithm (Sambridge, 1999) and transdi-
mensional Monte Carlo (Bodin, Sambridge, Tkalcic, et al.,
2012), were developed and prevalent in recent years partly
due to the significant improvement of computational resour-
ces, especially in 1D and 2D problems (including RF and SWD
problem). However, these start-of-the-art approaches all face a
problem that they are all derivative-free search algorithms and
thus did not include useful derivative information of the pos-
terior (Fichtner et al., 2019). As a result, a low accept ratio or
slow searching rate may occur in sampling the posterior dis-
tribution.

There are some alternative methods that use gradients such
as the variational method (Nawaz and Curtis, 2018; Zhang and
Curtis, 2020; Zhang et al., 2021), Langevin Monte Carlo method
(Siahkoohi et al., 2020), and the Hamiltonian Monte Carlo
method is one of those derivative-based approaches. In this
method, model parameters are viewed as the n-dimensional
location of a particle moving in the phase space (momen-
tum–location space; Neal, 2012). The trajectories of this particle
are determined by the Hamiltonian dynamics:
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EQ-TARGET;temp:intralink-;df4;41;743

dmi

dt
� ∂K

∂pi
;
dpi
dt

� −
∂U
∂mi

; �4�

in which the Hamiltonian is the total energy of the system
(kinetic energy K(p) and potential energyU(m)), and pi is a ran-
dom variable that plays the role of momentum of the particle. In
the Bayesian framework of equation (1), the kinetic and poten-
tial energy are defined as (Fichtner and Zunino, 2019):

EQ-TARGET;temp:intralink-;df5;41;639U�m� � − ln P�mjdobs�;K�p� �
1
2
pTM−1p; �5�

in which M is the mass matrix that determines the different
weights of different parameters. To search for a next model,
we randomly generate a new momentum for current particle
and make it evolve by the mechanics of equation (4) to a
new location, and the Metropolis rule is used to accept or reject
this new location with the probability:

EQ-TARGET;temp:intralink-;df6;41;522Πaccept � minfexp�−Hnew �Hcurrent�; 1g: �6�

In addition, equation (4) indicates that the Hamiltonian of
the particle is constant along the trajectory for a given starting
point and momentum. Thus, the huge advantage of HMC over
other MCMC methods is that the accept ratio of the new point
is nearly 1 (In practice, numerical errors may accumulate when
numerically solving this system).

There are several applications of HMC in geophysical inver-
sions, including seismic source inversion (Fichtner and Simute,
2018), Rayleigh-wave dispersion inversion (Aleardi et al., 2020),
P-wave tomography (Muir and Tkalcic, 2020), and even a full-
waveform inversion (Gebraad et al., 2020). However, it still lacks
the applications of HMC on the RF and SWD joint inversion
problems. In the HMC for joint inversion problem and the
Forward method sections, we will thoroughly discuss how
HMC could be merged with this classical inverse problem.

HMC for joint inversion problem
In the joint inversion problem of RF and SWD, a commonly
used misfit function is from Julià et al. (2000):

EQ-TARGET;temp:intralink-;df7;41;237Φ� 1
2

������
p
w2
r

r Xm
i�1

�dri −dr;obs
i �2�1

2

����������
1−p
w2
s

r Xm
i�1

�dsi −ds;obsi �2; �7�

in which wr , ws are the weight factors for RF and SWD datasets
(see Real data section for details), and p is a parameter in the
range of (0,1) to determine some additional weight.

Then a numerical solver with Leapfrog scheme is applied to
solve this first-order partial differential equation systems in equa-
tion (4), which could keep the energy conservation property of
the Hamiltonian to the first order of the time step (Fichtner et al.,
2021). In addition, to tackle the problem-related range of each
parameter, we add some constraints in the framework, including
hard constraints (like Poisson ratio >0) and soft constraints (like

in some models in which we cannot synthesize our data) in the
sampling. The pseudo code of generating a new sample from the
current one could be seen in the algorithm chart in Appendix.

One of the problems in HMC sampling is how to properly
choose the best hyperparameters to make sure the trajectories of
the particle sample the posterior distribution thoroughly. These
hyperparameters include the time step length (Δt), the number
of steps (L) and even the mass matrix. For Δt and L, they
actually determine the distance from the new sample to the cur-
rent one. If the distance is too small, these two samples cannot
be viewed as independent samples. In addition, if the trajectory
is too long, it would be not only time consuming, but the tra-
jectory may roll back to the previously sampled region (Neal,
2012). Some techniques are applied to solve this problem such
as the NO-U-TURN sampler (Hoffman and Gelman, 2014), but
we found that in our problem it will decrease the efficiency sig-
nificantly. In addition, some other researchers prefer to fix the
number of steps (Fichtner et al., 2019). In this article, to avoid
periodical trajectories, we randomly choose L and Δt from a
given set for every trajectory. This approach was suggested
by Neal (2012) and was applied by Aleardi et al. (2020).
What is more for the time step Δt is that it not only plays
the role like L but also determines the stability of the
Leapfrog scheme. It could be shown that the size of it should
be less than a threshold (Fichtner et al., 2021). Therefore, in
practice, we first test several different Δts for enough steps to
find the approximately upper limit point from stable to unstable.
Then we also set soft constraints for this parameter to exclude
some outliers in the parameter set, that is, we return to the pre-
vious point and change another Δt instead if the searching
becomes unstable. The mass matrix controls the truing, regulari-
zation, and the particle traveling speed during the sampling
(Fichtner et al., 2019), and we will discuss the effect of mass
matrix in The choice of mass matrix section.

Forward Method
In the joint inversion framework, we assume that the under-
ground media is composed of a stack of homogenous elastic iso-
tropic layers overlaid on a half-space, that is, m � �VP;VS; ρ; h�
for each layer. Because what we need are just the eigenvalues
(SWD curves) and the ratio of vertical and horizontal compo-
nents (RF data) of the wavefield in the frequency domain, and
there is no need to consider more general approach like wave-
number integration (Zhu and Rivera, 2002). As a result, the
matrix propagation method (Haskell, 1953; Dunkin, 1965) is
utilized to synthetic RF and SWD data only with different radi-
ation conditions in the half-space. For RF data, we deconvolve it
by water level regularization with a water level factor of 0.001.

Derivatives of RF and SWD
One of the requirements for HMC is that we need to evaluate
the gradient of the potential energy efficiently, otherwise it will
severally affect the efficiency when the number of unknown
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increases. Fortunately, the Fréchet kernel of RF and SWD data
could be easily computed. Here, we briefly discuss the proce-
dures for calculating these kernels.

For RF data, the surface displacements could be written in
the matrix form (Hu and Zhu, 2017):

EQ-TARGET;temp:intralink-;df8;53;678

�
iAx

Az

�
� 1

R11R22−R12R21

�
R22 −R12

−R21 R11

��
wU
P exp�−ναzN�

wU
SV exp�−νβzN�

�
; �8�

in which:

EQ-TARGET;temp:intralink-;df9;53;614R � E−1
N�1aNaN−1…a1: �9�

And ai is the Thompson–Haskell matrix in layer i, and Ei is
the eigenvector matrix of ai:

EQ-TARGET;temp:intralink-;df10;53;548 E−1 � γ
2

−1 −γ1
k
vα

1
2μ

k
2μvα

γ1
k
vβ

1 − k
2μvβ

− 1
2μ

1 −γ1
k
vα

− 1
2μ

k
2μvα

−γ1
k
vβ

1 k
2μvβ

− 1
2μ

2
66664

3
77775; �10�

in which γ � 2k2β2=ω2 and γ1 � 1 − 1=γ. Both E−1
N�1 and ai

are composed of elementary function operations of model
parameters. WU

P;SV is the upgoing wave component for P/SV
wave in the half-space. The RF is defined as

EQ-TARGET;temp:intralink-;df11;53;407FP � Ax

Az
� iR22

R21
; FSV � Az

Ax
� −

iR11

R12
: �11�

Then the derivative of RF for parameter m could be written as

EQ-TARGET;temp:intralink-;df12;53;341FP
;m � i

R22;mR21 −R21;mR22

R2
21

;FSV
;m � i

R11;mR12 −R12;mR11

R2
12

: �12�

And the derivatives of R could be transferred to Thompson–
Haskell matrix

EQ-TARGET;temp:intralink-;df13;53;275R;m �
�
E−1
N�1;maNaN−1…a1; if m in the half-space

E−1
N�1aNaN−1…ai�1ai;mai−1…a1; if m in the nth space

:

�13�

The concrete form of these expressions could be seen in
Hu and Zhu (2017).

For SWD data the Fréchet kernel is a little more cumbersome
than RF to find. Here we take the variational approach
(Gomberg and Masters, 1988; Aki and Richards, 2002). In the
frequency–wavenumber domain, the wave equation in each
homogeneous isotropic layer could be expressed as (Aki and
Richards, 2002):

EQ-TARGET;temp:intralink-;df14;53;93

�
−ρω2ui � λ∇i

�
∂
∂xj

uj
�
� μ∇2ui

Tijz�0 � 0; uijz→∞ � 0;
; �14�

in which ∇i → �ik; 0; ∂∂z�; and c � ω=k is the phase velocity.
Then we could write the variational form of this elastodynamics
problem:

EQ-TARGET;temp:intralink-;df15;320;704I �
Z

∞

0
L�u; c;m�dz � 0; �15�

in which I is the action, L is the Lagrangian of this problem
(Dahlen and Tromp, 1998; Aki and Richards, 2002), and
δI � 0 for all eigenfunction ui. For example, the Lagrangian
of Rayleigh wave is

EQ-TARGET;temp:intralink-;df16;320;600

L� 1
4
ρω2�r21� r22�

−
1
4

�
λ

�
kr1�

dr2
dz

	
2
�μ

�
dr1
dz

−kr2

	
2
�2μk2r21�2μ

�
dr2
dz

	
2
�
;

�16�

in which r1, r2 are the displacement eigenfunctions in horizontal
and vertical directions, respectively.

Then by perturbation theory we could relate the perturba-
tion of phase velocity to that of the model parameters by

EQ-TARGET;temp:intralink-;df17;320;457

0 �
X∞
m�1

Z
zm�1

zm

�
δρm

∂L
∂ρm

� δαm
∂L
∂αm

� δβm
∂L
∂βm

	
dz

−
X∞
m�1

�Lm��− δzm � δc
Z

∞

0

∂L
∂c

dz; �17�

in which �Li��− is the jump of the action across the ith disconti-
nuity. From equation (14), we could obtain the derivatives for
any model parameters for a fixed ω by the ratio of two inte-
grals. For example, for the S-wave velocity, we could have

EQ-TARGET;temp:intralink-;df18;320;314

∂c
∂β

� 	
m
� βmρm

UI0

� 	Z
zm�1

zm

r1�
1
k
dr2
dz

� 	
2
�4
k
r2
dr1
dz

� �
dz; �18�

in which U is the group velocity and

EQ-TARGET;temp:intralink-;df19;320;235I0 �
Z

∞

0
ρ�r21 � r22�dz: �19�

A subtle problem is that in equation (14) the Fréchet kernel
for the discontinuities should be converted to that of the thick-
ness in our model parameterization. It could be converted by
the following formula:

EQ-TARGET;temp:intralink-;df20;320;133Ki
h �

XN
j�i�1

Kj
discont: �20�

For group velocity, the derivatives could be obtained by
utilizing the relation to the phase velocity:
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EQ-TARGET;temp:intralink-;df21;41;496

∂U
∂m

� ∂U
∂c

∂c
∂m

� U
c

�
2 −

U
c

	
∂c
∂m

−
U2

c2
T

∂

∂T
∂c
∂m

; �21�

in which T is the period, and ∂
∂T

∂c
∂m term could be evaluated by

central-difference approach.
Here, we list an example to show the accuracy of the Fréchet

kernels. We calculate the Fréchet kernel of P–RF and Rayleigh
phase velocity by analytic and differential method with the
7-layer model shown in synthetic test. The range of differential
perturbation from 10−9% to 10% for α (P-wave velocity), β
(S-wave velocity), ρ (density), and h (thick of layer).
Figure 1 shows that the discrepancy between analytic and dif-
ferential derivatives is under 1% for common difference step.

Application
Synthetic test
We apply our algorithm to synthetic data set to verify its val-
idity and limitation. Here, we conduct four types of tests. First,
we set up four models to perform the inversion. The first model
is a simple 3-layer model with the Moho interface at 40 km and

a layer in the lithosphere at
70 km. The velocity is given
according to the AK135 model
(Kennett et al., 1995). The sec-
ond model is the 4-layer model
with a 5 km thick sedimentary
layer at the top with 1.9 km/s
shear wavespeed. In the third
model, the crust is divided into
the upper and lower crust, and
there is a 5 km thick low-veloc-
ity layer (3.3 km/s) in the lower
crust. The last model is a dou-
ble low-velocity model that
contains a low-velocity layer
in the upper and lower crust.
All the inversions are per-
formed with 400 trials (includ-
ing 100 trials in the burn-in

phase) for every 16 chains. The searching range is ± 20%
around the true model, including the velocity and thickness
of each layer.

To demonstrate the advantage of our algorithm, we compare
our algorithm with rj-McMC method (Dreiling and Tilmann,
2019) with 16 chains (same as HMCmethod). We choose differ-
ent numbers of samplings to make sure similar computation
time for each experiment; the statistics are shown in Table 1.
Figure 2 shows that the Moho interface is recovered well in
all the models, and same as the structure such as shallow sedi-
mentary and low-velocity layers, especially the low-velocity of
30 km in Figure 2c. The acceptance rate of the HMC method
is about 90%. Meanwhile, the acceptance rate of the rj-McMC is
only around 35%∼40%. The misfit curve in Figure 3 indicates
that the HMC method will converge to a stationary regime
much faster in only 20 samples in the synthetic test.

Second, we choose a different searching range, from ± 10%
to ± 65% around the true model with the 7-layer model in 400
trials to test how the accuracy of the prior model will affect the
inversion. The result of Figure 4 shows that the more accurate

Figure 1. Misfit of analytic and differential method. The misfit of receiver function is in red, and
Rayleigh phase velocity is in blue. The Gaussian factor and ray parameter of receiver function (RF)
are 1.5 and 0.045 s/km, respectively.

TABLE 1
Parameter and Computation Time of Different Model Inversion

HMC (This Study) rj-McMC (Bayhunter)

Model Name Time (s) Parameter Samples Time (s) Parameter Samples

Model 1 33.04 3 × 2 = 6 400 34.69 2–4 11,000

Model 2 77.77 4 × 2 = 8 78.31 3–5 20,000

Model 3 100.60 5 × 2 = 10 103.27 4–6 25,000

Model 4 129.59 7 × 2 = 14 132.24 6–8 25,000

Note that the velocity and thickness are inverted simultaneously in HMCmethod so that the actual parameter is double. HMC, HamiltonianMonte Carlo; and rj-McMC, reversible-
jump Markov chain Monte Carlo.
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(a) (b)

(c) (d)

Figure 2. Inversion results of different models with Hamiltonian
Monte Carlo (HMC) framework. (a) Simple 3-layer model;
(b) 4-layer model with sedimentary; (c) 5-layer model with single
low-velocity layer; and (d) 7-layer model with double low-velocity

layer. The red line is the true model, and black dotted line is the
mean model, which is average of 1% best (minimum misfit)
model. The blue dashed line is the mean model, which inverted by
reversible-jump Markov chain Monte Carlo (rj-McMC; Bayhunter).
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prior model will provide a better result. In most cases, the
searching range should be around ± 20% ∼ ± 40% of the true
model for our algorithm. Third, we test different numbers of
sampling for inverting the 7-layer model within a ± 40%
searching range. Figure 5 indicates that the more trials we per-
form the better result we get. The computation cost will tre-
mendously increase for calculating gradient, and 400 trials
are enough for this synthetic test.

Finally, we try different initial model to check whether our
algorithm relies on it. Different from the previous synthetic test
to which initial model is drawn randomly, we deliberately cast the
initial model evenly in the range of ± 30% with 800 trials. Figure 6
shows that the Moho discontinuity is recovered well, while there
is still deviation of second layer (70 km depth interface). The
velocity is relatively accurate (∼4.7 km/h). The deviation may
be caused by the low-velocity gradient of second layer (from
4.5 to 4.7 km/h) and the wide search range of depth (from 49
to 91 km). Therefore, we only need to set evenly distributed initial
models and then remove those outlier chains after inversion.

Real data
We also apply our algorithm to a real dataset—a borehole sta-
tion IU.CHTO, which was located in Thailand for more than
10 yr of operation. We perform the inversion with 800 trials
and set the weight factors wrf � wswd � 1. The weight factors
are chosen according by the data noise of data set. For general
cases, the data noise could be estimated by statistical method
such as Bootstrapping (Zoubir and Iskander, 2004). The model
setting could be found in Table A1. The result in Figure 7 indi-
cates the smooth Moho interface from the depth at 25 to
35 km, and shear wavespeed increases from 3.4 to 4.5 km/s,
which agreed with the previous studies (Wang et al., 2018).
Majority H − κ result (Bai et al., 2010; Noisagool et al.,
2014) shows that the Moho layer of IU.CHTO is around

30 km, which is close to the
center of our Moho result.
There is a negative phase
around 8.5 s, which we did
not fit well. According to the
stacked RF profile (Bai et al.,
2010; Noisagool et al., 2014),
this negative phase only occurs
in RF with high ray parameter
(above 0.0625 s/km) and
northeast direction. It may
indicate the anisotropy of
underneath medium. The
inversion result with higher
Gauss factor of RF also leads
to the same interpretation
(see the Fig. A1). Compared
with the velocity model of
other research, the discrepancy

of Moho is mainly due to the limitation of layer number, and
the deviation of shallow layer might cause by the lacking of HV
ratio data. Although only one RF and Rayleigh wave dispersion
are used, the principal feature is recovered in few trials.

Discussion
The fixed-dimension dilemma
Since the HMC is a kind of fix-dimensional method, we have to
choose the hyperparameter (the number of layers) before per-
forming the joint inversion. Although the number of layers is a
hyperparameter in this HMC method, there are still several
ways to choose the number of layers. First, Carter et al.
(2021) suggest that we could perform other methods such
as rj-McMC or normal linear inversion methods and then
choose the parameter based on the result. As long as we care
not to introduce the possible bias, we could achieve an appro-
priate estimation of the number of layers. Second, Aleardi et al.
(2020) point out that the dimensionality could be decided by χ2

or Bayesian information criterion (BIC) (Schwarz, 1978;
Sambridge et al., 2006; Ando, 2010). The BIC is defined as

EQ-TARGET;temp:intralink-;df22;308;236BIC � k ln n − 2 ln L; �22�

in which L denotes the maximized value of the likelihood func-
tion of the model, n is the number of data points, and k is the
number of model parameters. Figure 8 illustrates the result
what if we use a wrong number of layers to perform the
HMC inversion for model 4, and Table 2 presents the statics
result of synthetic.

Combining Table 2 and Figure 8, we could conclude that
although the misfit for larger hyperparameters is lower, it
will also obtain more penalty. The BIC of the 7-layer is lower
than other models, so we can choose the appropriate hyper-
parameter.

Figure 3. The misfit curve of model 4 inversion. The red line is the Markov chain Monte Carlo
(McMC) method, and only the first 10,000 iterations are present. The blue line is the HMCmethod.
The closeup of the first 50 iterations is present in the figure.
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The choice of mass matrix
The mass matrix plays an important role during the HMC
sampling. The common mass matrix is proportional to the
identical matrix I. In our research, we found that the gradient
of velocity is larger than the thickness. So, the particle will

(a) (b)

(c) (d)

Figure 4. Inversion results of different searching range with
7-layer model. (a) ± 10% searching range; (b) ± 20% searching
range; (c) ± 40% searching range; and (d) ± 65% searching
range.
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oscillate in the model space of velocity rapidly, and the sam-
pling processing in the model space of thickness may be insuf-
ficient.

To tune the Hamiltonian trajectory of particle, we could
substitute the mass matrix by

(a) (b)

(c) (d)

Figure 5. Inversion results of different trials. (a) 200 trials; (b) 400
trials; (c) 800 trials; and (d) 1000 trials.
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EQ-TARGET;temp:intralink-;df23;53;301M � GTC−1
d G� C−1

m ; �23�

in which G is the linear forward operator, Cd is the data covari-
ance, and Cm is the prior model covariance (Fichtner et al.,
2019). However, this mass matrix is only appropriate for linear
problems, and the inverse of mass matrix equation (23) may
not have explicit forms. Therefore, to capture the local gradient
information, we introduce the Hessian matrix H of potential
energy in Hamiltonian system (Fu et al., 2016). The problem
becomes the estimation of Hessian matrix. The L-BFGS
method is the most popular quasi-Newton method. In L-
BFGS approximation (Nocedal and Wright, 1999), the inverse
Hessian matrix for mk will be

EQ-TARGET;temp:intralink-;df24;53;132Hk�1 �
�
I −

ΔgkΔmT
k

ΔmT
kΔgk

	
Hk

�
I −

ΔgkΔmT
k

ΔmT
kΔgk

	
�mkmT

k ; �24�

in which Δmk � mk�1 −mk and Δgk � ∇U�mk�1�
−∇U�mk�. Figure 9 shows that the particle moves much longer

in the model space of thickness after substituting the mass
matrix.

In addition, there are still many choices for mass matrix,
such as decrease with the iteration (Lima et al., 2022).
There may not exist a universal choice, and these choices
may depend on the specific properties of the inversion
problems.

Is the prior strong?
Compared to other rj-McMC methods, such as the research
from Dreiling and Tilmann (2019) or Bai et al. (2021), we
acknowledge that the prior for first synthetic test (Fig. 2)

(b)

(a)

(c)

(d)

Figure 6. Inversion results of different initial models. (a) Inversion
result; (b) receiver function fitting; (c) phase velocity of Rayleigh
wave fitting; and (d) group velocity of Rayleigh wave fitting. The
gray lines are the best (the minimum misfit) results of each chain,
and yellow lines are different initial model.

10 Seismological Research Letters www.srl-online.org • Volume XX • Number XX • – 2022

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220220044/5718665/srl-2022044.1.pdf
by The Institute of Geology and Geophysics, Chinese Academy of Sciences user
on 16 October 2022



seems relatively strong. Although the rj-McMC method
allows a larger range of prior, this advantage is usually based
on massive chains, trails, and strictly selection criterion. For
example, Dreiling and Tilmann (2019), also the authors of
Bayhunter, use a wider range (VS from 2∼5 km/h, Vp=VS

from 1.45∼2.05, and the maximum number of layers is 20)
priors for rj-McMC method. The inversion was performed
with 100 chains, and each chain performed 1.8 million iter-
ations, and those chains for which likelihood function is sig-
nificantly lower than other chains were declared as outliers
and will not be considered in choosing the inverted model.
Bai et al. (2021) explored the model space 2 million times
with the 3:2 ratio for burn-in and exploration phase. To elimi-
nate the unreasonable solution, the outlier chains for which
likelihood functions are lower than 0.8 times the median of all
chains were discarded. Moreover, the model that has a shear
velocity of greater than 4.0 km/s or less than 3.0 km/s in bot-
tom half-space is also rejected. Those processing could be
considered as a kind of prior in practical.

We perform the inversion of model 4 with 50 chains and
1200 trials (see Fig. A2). The prior of vs is uniform distribution
in range 2.5∼5 km/s, and the prior of thickness is ± 50%
around the true value, which might be considered as a nonin-
formative prior. After we discard the outlier, the model is also
recovered well except the fifth layer.

For many linearized joint inversions, the difference between
initial model and the final result is just around 20%, such as the
research of Tang et al. (2022) or Döring et al. (2022). We
believe that it is accurate enough to set the prior based on local
1D reference model and CRUST 1.0.

Conclusion
We proposed a Hamiltonian Monte Carlo sampling method
for the joint inversion of RF and SWD in this article. The

TABLE 2
The Bayesian Information Criterion (BIC) and χ2 for
Different Parameters in Two Synthetic Tests

Synthetic Test Parameters BIC χ2

Model 4 (7 layer) 6 layers 81.171 0.1255

7 layers 74.344 0.1082

8 layers 81.732 0.1002

(a) (b)

(c)

Figure 7. Inversion result of IU.CHTO with HMC framework.
(a) Inversion result; (b) receiver function fitting; and (c) phase
velocity of Rayleigh wave fitting.
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synthetic and real data test shows the applicability and useful-
ness of our HMC algorithm. The number of required samples
reduces dramatically by introducing the gradient information
during the inversion. We applied a semianalytical method to
efficiently compute the gradient of the misfit function of this
inverse problem, which gives an advantage of achieving the
tradeoff between a high acceptance rate and a low number
of samples. Although the detail of our algorithm can be
improved, such as by adding the reverse jump process to deter-
mine the number of layers (Sen and Biswas, 2017) or by treat-
ing the noise levels as unknown parameters, the results are still
promising. We could expect that with the combination of other
methods our approach can hope to decode the mysteries of our
earth system economically and effectively in the future.

Data and Resources
The data used in this article are the RF and Rayleigh-wave dispersion of
IU.CHTO, which is published in Wang et al. (2018). The continuous
waveform can be obtained from the Incorporated Research
Institutions for Seismology (IRIS) Data Management Center. The code
used in this article is available at https://github.com/nqdu/RfSurfHmc
(last accessed June 2022).
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Figure 8. The inversion result of model 4 with different number of
layers. (a) 6-layers result and (b) 8-layers result.
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Appendix
This appendix provides the details related to the algorithm of
one-step HMC sampling, the Table A1 for the model setting of
real data inversion, and inversion result of higher gauss factor
data and wider search range, respectively (Figs. A1 and A2).

The Inversion result of higher Gauss factor in real
data test
To verify the inversion result of IU.CHTO, we also perform the
inversion with higher Gauss factor of receiver function. The
data were obtained by EarthScope Automated Receiver
Survey. Compared with the result of lower Gauss factor, the
low-velocity layer is clearer, and the posterior probability is
narrower. The inversion result is in Figure A1.

(a) (b)

(c)

Figure A1. Inversion result of IU.CHTO with HMC framework.
(a) Inversion result; (b) receiver function fitting; and (c) phase

velocity of Rayleigh wave fitting. The Gauss factor of receiver
function is 2.5.
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TABLE A1
Parameter for Real Data Inversion

Layers VS (km/s) Thickness (km)

1st–4th 2.5–3 1–3

5th 2.5–3.7 2–5

6th–10th 3.2–3.7

11st–13rd 3.5–4.5

14th–16th 4.2–4.7 10–15

Half-space \

ALGORITHM
One Step of Hamiltonian Monte Carlo (HMC)
Sampling

Input: Current sample xcur; time step length dt; number of steps L;
boundary of samples xbnd; and Fréchet kernel ∇U

Output: New sample xnew

1. Initialize the momentum P∼N(0,1)

2. Calculate the kinetic energy K and potential energy U

3. Compute current Hamiltonian Hcur � K � U

4. Update the momentum Pnew � P − dt ×∇U�xcur� × 0:5

5. For i = 1 to L do

6. Update the current sample xnew � xcur � dt � Pnew

7. If xnew is not inside boundary

8. Adjust the current sample xnew � 2 × xbnd − xnew

9. GOTO Step 7

10. Update the momentum Pnew � P − dt × ∇U�xcur� × 0:5

11. Calculate the new kinetic energy Knew and potential energy Unew

12. Compute new Hamiltonian Hnew � Knew � Unew

13. If log�random�0;1�� < min�Hcur − Hnew; 0�

14. Accept the new sample: Return xnew

15. Else

16. Reject the new sample: Return xcur

Figure A2. Inversion results of model 4 with wider search range.
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